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Abstract—Ego-motion  estimation from millimetre-wave
Doppler are subjected to high levels of outliers caused by
multipath reflections. A common method to reduce the effect of
outliers is to fit measurement points to a velocity model using
the random sample consensus (RANSAC) algorithm, where the
velocity model is traditionally parameterized from data collected
from a single time step. In this paper, we show that the temporal
relationship of data points between successive measurements
can be exploited to improve velocity estimation. Two variations
of RANSAC with an integrated weighted sliding window are
proposed. Each point in the window receives a weight that
decreases over time. In the first algorithm, points are sampled
with a temporally weighted probability and the velocity model
is generated using least square regression (LSQ). In the second
algorithm, points are sampled with a uniform probability but
the model is parameterized with a temporally weighted LSQ.
The motion of the platform is then calculated for both methods.
Experimental results using data from three indoor locations
demonstrate an average position accuracy improvement of
19.5% over conventional RANSAC implementations.

Index Terms—Ego-motion, mmWave, weighted RANSAC,
weighted least-squares, sliding window.

I. INTRODUCTION

How does a sensing platform know how far it has trav-
elled? This question has been one of the forefront topics in
autonomous vehicle research. A popular approach to answer
this question is through ego-motion estimation, that is, the
process of calculating the platform’s motion relative to a scene.
In ego-motion, the motion a sensor observes is either caused
by the sensor’s self (ego) motion or by objects moving in the
sensor’s scene. When the scene is static, this relative motion
is used to infer the platform’s position over time [1].

The most common sensors used in mobile platforms in-
clude LIDARs, cameras, and radars. Radar sensors, such
as frequency modulated continuous wave millimetre wave
(mmWave sensors) have a number of advantages over LIDAR
and cameras. A longer wave length allows them to operate
in extreme conditions where LIDAR and cameras typically
fail, such as environments with low viability due to smoke,
dust, or fog [2]-[4]. Additionally, FMCW mmWave sensors
can measure the velocity of objects via the Doppler effect [5].

As mmWave sensors transmit electromagnetic waves, they
are reflected off objects and returned to the sensor. However,
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these waves do not always take a single path back. Waves
often reflect off multiple objects, and when returned to the
sensor lead to “ghost points” within the measurement. So
called because they do not represent a real object. As such,
these points due to multipath reflections must be treated as
outliers and discarded. In [6] it was found that for a single
indoor measurements, up to 75% of all points observed can be
outliers. In addition, the data collected by mmWave sensors
is very sparse compared to data collected by LIDARs [6].
Combined, data sparsity and multi-path reflections result in
measurements with a high ratio of outliers to inliers.

These challenges entail that mmWave sensors cannot re-
place LIDAR sensors in existing ego-motion estimation meth-
ods. For example, since LIDAR measurements are denser [6],
ego-motion can be estimated by comparing the relative rotation
and translation between consecutive measurements in a pro-
cess known as scan-matching. With mmWave measurements,
additional deep-learning processing is often used [4], [6], [7].
However, these methods require extensive training and their
ability to generalize to different locations is limited.

Another ego-motion estimation approach with mmWave is
to use the Doppler velocity of the sensor’s surroundings to
estimate its motion [8]-[10]. This is done by repeating 3
iterative steps for each measurement: 1) fit a velocity model
to the measurement, 2) use the model to remove multipath
reflections from them, and 3) rerun step 1) without outliers
to refine the model. Once the model is parametrized, the
velocity is integrated to calculate the platform’s motion. As
noted in [9], the accuracy of these methods depends heavily
on the model’s ability to identify and reject outliers (points
due to multi-path reflections). With a large number of outliers,
the velocity estimate may not converge to the true platform
velocity, causing the position error to drift over time.

To remove measurement outliers during velocity model
fitting, different algorithms have been proposed. A commonly
used algorithm is the random sample consensus (RANSAC),
an iterative model fitting algorithm designed for data con-
taining outliers [8], [11]-[15]. For each measurement, the
RANSAC algorithm randomly samples several Doppler ve-
locities to fit the model. Then the error between the model’s
estimated Doppler and the measured Doppler is calculated,
and based on this error, points are categorized as inliers or
outliers. The process of selecting points, fitting the model, and
calculating the error is then repeated a set number of times.



The model with the largest number of inliers and lowest error
is selected. When the measurement has more outliers than
inliers, model parametrization is not accurate [8].

Scan matching for LIDAR is based on the principle that
consecutive measurements are correlated over a short period
of time by the platform’s motion [16]. Applying this logic to
mmWave measurements, the Doppler velocity of stationary
objects (inliers) should be consistent over short periods of
time. Thus, we can expand on previously proposed methods
by hypothesizing that this temporal relation between inliers
does not hold for outliers, i.e., outliers are errors unique to
the time of their measurement, and independent in time with
the motion of the platform [17].

Provided that this hypothesis is true, a sliding window con-
catenating multiple measurements should increase the density
of only the inlier points, while leaving the outlier density ap-
proximately the same. In this paper, to verify this hypothesis,
we propose two new variations of RANSAC, which estimate
ego-motion over an integrated weighted sliding window of m
previous measurements. The sliding window of measurements
are concatenated into a first-in-first-out temporal queue, as
shown on the left in Fig 1. The location of the measurement
within the queue defines the weight that each point within the
measurement receives. In the first method, Temporal Sample
Consensus for ego motion estimation (TEMPSAC), the veloc-
ity model is fit to measurement points with higher weights,
biasing the velocity model in time, as seen in the top of Fig.
1. In the second method, Temporally Weighted Least-Squares
for ego motion estimation (TWLSQ), the weights are used
for a weighted least-squares regression to improve velocity
model fitting, as seen in the bottom of Fig. 1. In this way,
both methods capture the temporal relationship of ego-motion,
resulting in more accurate motion estimation compared to past
RANSAC implementations. To the best of our knowledge,
this is the first application of a temporally weighted moving
window RANSAC for ego-motion estimation with radar data.

The paper is structured as follows: In Section II an overview
of the proposed algorithms is presented. The algorithms are
then optimized using the cost function defined in Section
II-D, after which they are experimentally validated in Section
IIT using the open source radar dataset Coloradar [18]. In
total, 300 full path evaluations are conducted to compare
our methods against a standard implementation of RANSAC,
initially proposed in [8]. The results show that both methods
increase the accuracy of ego-motion estimation by over 19%.
The algorithms proposed in this paper are publicly available'.

II. IMPROVED EGO-MOTION ESTIMATION WITH
WEIGHTED SLIDING WINDOW RANSAC

To introduce the proposed algorithm, Section II-A first de-
tails how motion is estimated assuming the mmWave Doppler
velocity data is outlier free. Section II-B describes how the
standard RANSAC algorithm is used to remove outliers from
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non-ideal data. Finally, Section II-C describes how the pro-
posed methods leverage the temporal relationship of mmWave
measurements to improve motion estimation.

Hereafter a matrix is written in bold uppercase, a vector
in bold lowercase, a scalar in unbolded lowercase, and their
superscript defines the reference frame in which they are being
expressed. Further, we consider a mobile platform equipped
with mmWave radar and define three reference frames as
shown in Fig. 2A. The fixed world reference frame RF,, is
where the ego-motion of the platform’s body frame RF}, is
observed. Attached to the RF} is the sensor reference frame
RF, where all mmWave measurements are generated.

A. Ego-Motion Estimation using mmWave Radar

A mmWave sensor moving in a static environment can be
equivalently represented from the sensor’s perspective as a
stationary mmWave sensor with moving environment. Using
this representation, the environment will have a relative motion
equal but opposite to the sensor’s original motion. We will use
this frame of reference moving forward. Now consider that at
sample ¢, the mmWave measures a cluster of points *M,, i.e.,

a collection of a; data points pj—; .. 4, such that
*M; = [*p; *Pa, (1)
S S T
p; =["0; “vg,] 2

where °0; is the angular location, and ®vg4; is the Doppler

speed of the j'" point *p; in RFj, respectively, as illustrated
in Fig. 2A. The Doppler speed °vq, is the component of
the object’s velocity (-°v,) in the radial direction. In other
words, the component along the line projecting from the object
to the centre of RF, at the angle °0; with respect to the
horizontal axis °x of RF;. As the platform moves through
the environment with a constant speed, the measured Doppler
speed of static objects will change depending on their location.
This is shown in Fig. 2A when the platform moves from
sample ¢+ = 1 to ¢ = 2. When multiple objects are observed
within one measurement, as shown by the black circles in
Fig. 2B, Kellner et al. [8] showed that the Doppler speed
has a sinusoidal relationship with the sensor’s speed “v,. By
transforming these measurements from the °x-°y plane to the
%0-°v4 domain, as in Fig. 2C, the object’s Doppler speed can
be modelled as,

Sﬁdj = —%v;, cos (°0; — ay) 3)

where Sﬁdj is the estimated Doppler speed of the model, which
is parameterized using ®a; and ®vs,. Here, *«; is the angular
direction of the sensor’s speed ®v;, at sample 7. Expanding (3)
the model becomes,

Sug, = —°vg, [cos(®0;) cos(®a;) + sin(*0;) sin(®e;)] . (4)

To solve for the unknown ®c; and *v,, parameters in (3),
Eq. (4) can be reformulated as a matrix equation:

SV, cos®f; sin®6;
s EPN
. . vs, cos(®ay) 5)
= : : sp. sin(Sa.) |
vg, sin(*ay;)
s S0 . 3in 56 -
Vd; cos’f; sin’f;
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Fig. 1. The proposed ego-motion estimation methods. Measurements are placed within the sliding window and then combined. In TEMPSAC, points are
sampled with a temporally weighted probability and then the velocity model is generated using LSQ. In TWLSQ, the points are selected having a uniform
probability but the model is parameterized with a temporally weighted LSQ. The motion of the platform is then calculated for both methods.

containing all objects j = 1,...,a; in *M;, and solved using
the measured Doppler velocities via least-squares regression
(LSQ). The resulting *cv; and the sensor speed v, are then
converted to the Cartesian vector, *v,,. Next, to calculate the
motion of the platform, ®v, must be transformed into RF,,
through a series of homogeneous transformations,

w‘;si = wai bHsS{’s (6)

where v is the homogeneous form of *v, such that sv, =
[sv, 1], "H, is the homogeneous transformation from RF,
to RF, governed by rotation angle ®/3 between *x and ®x about
°x x °y, and “H,, is the homogeneous transformation from
RF, to RF, governed by the rotation angle “@; between *x
and “x about “x x "y at ¢ (see Fig. 2A). With “v known,
the platform’s current position is the discrete integration of
velocities from the first sample ¢ = 1 to the current sample i,

wdi = iwvsi . Atz (7)
i=1

where At; is the change in time between the current and past
measurement sample (i.e., ¢ and ¢ — 1).
The estimated pose of the platform *g; is defined as

vgi =i Yol ®)
B. Random Sample Consensus (RANSAC) Filtering

The previous section assumed that all points in the measure-
ment are inliers (static and not ghost points). To fit the velocity
model using measurements containing a large amount of
outliers, filtering is required. RANSAC is a model estimation
algorithm robust to data with many outliers [11], [19]. The
algorithm has three steps, 1) estimate model parameters, 2)
partition data, and 3) determine best partition and refit model.

Step 1 - Estimate model parameters: Given a measurement
*M; of a; points °p;, a random selection of n points from
M, can be used to find °a; and ®vs, by solving (5) through
LSQ regression [11]. In the case of a cosine curve, the
minimum number of points to fit the curve is n = 2. The

random selection of an entry °p; is governed by the uniform
probability distribution such that,

Pr(°*p;) = Up a,]5 ©)

where Pr(-) is the probability function of a random variable.

Step 2 - Partition the data: For a point *pj—1,.. ., €° M;,
the error e; between the measured point’s Doppler speecl SV,
and the speed estimated from the model fit in Step 1 *vq; is,

ej = (Pvg; — *vg;)> (10)

A point °p; is considered an inlier if the error is below a
predefined threshold ¢, that is:

inliers = {°p; | e; < ¢e}.

(11

The number of inliers c is then counted. If c is larger than a
predefined threshold z, then the algorithm proceeds to Step 3,
otherwise it goes back to Step 1.

Step 3 - Determine best partition and refit model: LSQ
is then repeated to update the parameters in (3) using all
identified inliers. The error in (10) is re-evaluated for all
inliers. To determine the quality of the refined model, the mean
error of all inliers is calculated:

C
1
e:fg e
c 4 J
j=1

This 3-step process is repeated & times. The model parameters
that result in the lowest error are used to parametrize (3), which
is then used to determine the platform’s motion “'d;.

°pj € inliers. (12)

C. Ego-Motion Estimation Using Temporal Weighting

In order to leverage the temporal dependency of inliers and
the temporal independence of outliers between measurements,
a first-in-first-out sliding window SW with m measurements
is defined. Henceforth, 7 is the index within SW such that
SW = {*M;—n, *M;—pm—1,..., *M;—_1}, as shown on the
left of Fig. 1, where the newest measurement is *IM,,, and the
oldest is “IM;. Equation (2) is redefined as
1" V M, € SW.

S S

p; = [*0; *va (13)
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Fig. 2. A) Doppler velocity measurement °vg, from a mobile platform
moving with speed ®vs at an angle ®a with respect to (w.r.t) °x. At
i = 1 and i = 2, the sensor measures °vg, and °vg,, respectively, in
the sensor reference frame RFs along 0 w.rt. °*x. The orientation of the
body reference frame RF} w.r.t to the world reference frame RF,, and of
RFs wrt RFy, are given by “¢ and b, respectively. B) Example of a
mmWave measurement *IM; with all static points shown in black and outlier
points shown in red. In RFs objects appear moving with velocity —%vs.
Here the ¢ and j subscripts have been omitted for readability. In C) points
from B) are viewed in the *0-°v,; domain. The object points fit a sinusoidal
curve Slfdj = —%vg, cos (*0; — *a;) from which the platform’s velocity is
estimated.

where w; is the sliding window index-dependent weight as-
a; In °M; and calculated as,

/\m—i
Z:‘Zl Am—i
where 0 < A <1 is the user defined fixed forgetting factor as
in [20].

As A — 0, more weight is placed on newer measurements
points than old points. As A — 1, the points are weighted
equally. Unlike in [20], w; € [0,1] so it can be thought of as
the probability of forgetting the points in *M;, Pr(*M,;) = w;.

The weights dual usage in the sliding window is the basis
of our proposed algorithms: When the weights are used as
probabilities, they define the likelihood of a point in SW

Ae0,1] (14)

w; =

being selected to fit the model. When used in a weighted
LSQ regression, the temporal location of *M; is considered.
These two RANSAC algorithms will hereafter be referred to
as the Temporal Sampling Consensus (TEMPSAC), and the
Temporally Weighted Least-Squares (TWLSQ).

Temporal Sampling Consensus for Ego Motion Estima-
tion (TEMPSAC): The temporally weighted points in (13) are
used for Step 1 in the regular RANSAC algorithm (see Section
II-B), where the probability of selecting a point is governed
by (9). In contrast, here this probability is replaced with

Wy

Pr(°p;) = —

Spj € *M;.
a;

15)
Thus, more recent points are more likely to be used. To sum-
marize the algorithm for each sample ¢: 1) The sliding window
and weights are updated (see Fig. 1, left), 2) TEMPSAC is
calculated over the sliding window, 3) model parameters with
the lowest error are used in (3) to calculate ego-motion.

Temporally Weighted Least-Squares for Ego Motion Es-
timation (TWLSQ): The temporally weighted points in SW
(13) are used for Step 1 in the regular RANSAC algorithm
presented in Section II-B. In contrast to regular RANSAC, a
weighted-LSQ (WLSQ) regression is used for model fitting
(Step 1) and evaluation (Step 3), and (10) is replaced with

ej(“"ej) = wi(svdj — SUAdj)Q VvV °M; € SW. (16)

By applying the WLSQ regression a higher weight is given
to the errors observed in more recent measurements, while still
sampling uniformly across the sliding window. In summary,
for each sample i: 1) The sliding window and weights are
updated (see Fig. 1 left), 2) a model is fit to the window and
WLSQ regression is calculated, 3) model parameters with the
lowest error are used in (3) to calculate ego-motion.

D. Hyperparameter Optimization

TEMPSAC and TWLSQ require five hyperparameters to be
specified: 1) the fixed forgetting factor A, 2) the buffer length
m, 3) the number of iterations of RANSAC £k, 4) the number
of initial points to fit the model n, 5) the threshold to define
an inlier e, and 6) the minimum required number of inliers
z. The accuracy of the estimated platform motion from (8)
can be evaluated using the relative distance (error) between it
(g;) and the known ground truth g; at sample . The error is
calculated as g; © g;, where © is the inverse compounding
operator that returns the relative pose as reported in [21]. For
samples @ = 1,...,l where [ is the desired sample to stop at,
the optimization is formulated as a mixed integer programming
problem to minimize the absolute pose error (APE) [22],

l

. 1 A
min. APE = j;(gz ogr)?

0<A<1l  £>0
1<z <min{a;}

17
s. .

n,z, k,m € NT.



TABLE I
COMPARISON OF AVERAGE ABSOLUTE POSE ERROR (AAPE) FOR
DIFFERENT ENVIRONMENTS. THE AAPE IS PRESENTED IN METRES.

Algorithm EC IRL EA

TEMPSAC 2812 2352 5.615
TWLSQ 2338  2.166 5.653
KB 3.644  3.603 5.672

III. EXPERIMENTAL VALIDATION

The proposed methods are compared against the implemen-
tation introduced in [8] further referred to as KB, using the
open source dataset Coloradar [18]. Coloradar is a multi-sensor
dataset spanning six locations and over 13 kilometres. The
dataset contains 3D measurements and motion. In this current
paper, they are projected onto the zy-plane to be evaluated
in 2D. For the purposes of our investigation, only single chip
radar data (TT AWR1843BOOST-EVM), which has a sampling
rate of 10 Hz is considered. The orientation of the platform
Y, is provided by an IMU.

Hyperparameter optimization: The data from 10 m of the
Engineering centre hallway is used along with the correspond-
ing ground truth. The hyperparameters are optimized using a
genetic algorithm implemented with the pymoo Python pack-
age [23]. In total, it evaluated 2500 parameter combinations.
The parameters that minimized (17) are, A = 0.815, m = 3,
k = 1146, n = 2, ¢ = 0.0105, and z = 10, resulting in
APE = 0.562 m. These hyperparameters are used for all three
methods, however, KB has no sliding window or weights.

Proposed methods validation: The indoor locations sim-
ulated are Edgar Classroom (EC), Intelligent Robotics Labo-
ratory (IRL), and Edgar Army (EA), having a path length of
181 m, 81 m, and 131 m, respectively. Each location includes
a variety of obstacles, from irregular walls to regular and
repeating architecture. Since RANSAC is nondeterministic,
each location was validated using 100 trials for each method.

Fig. 3, shows the xy-trajectory, APE over time and average
absolute pose error AAPE (i.e., the sum of the APE for each
location divided by the number of trials) for EC, IRL, and EA
respectively. The standard RANSAC method (KB) performed
the worst on average in all three locations. Taking a closer
look at the xy-trajectory in IRL, the motion estimated by KB
is less consistent than the other methods. For short periods it
may perform marginally better than TEMPSAC or TWLSQ
due to the lag introduced by the sliding window, but these
small gains are negated by the large jumps in location seen
in the upper right of IRL. These observations are confirmed
in the AP FE-time plot, which shows large errors between 40
to 60 seconds. These errors are a result of mmWave mea-
surements containing more outliers than inliers, causing the
motion estimated to diverge from the platform’s true motion.
In contrast, TEMPSAC and TWLSQ did not experience these
spikes in error at any location. The drop in EC APE at 145
seconds, is caused by the platform stopping.

These results show that by weighting the sliding window,
TEMPSAC and TWLSQ are being constrained to the set of ve-

locity model solutions consistent with previous measurements.
The fact that our methods maintained a consistent trajectory
in those locations supports our hypothesis that the inlier’s
Doppler velocity is consistent over short periods of time,
while the outlier’s measurement maintain no such temporal
relationship. This is further evidenced by the fact that our
methods have a lower AAPE with smaller interquartile range.

The AAPE for the 100 trials are shown in Table 1. As
expected from the results in Fig. 3, both our methods outper-
form KB, with TEMPSAC showing an average improvement
of 19.5% and TWLSQ showing an average improvement of
25.3%. Additionally, TWLSQ outperforms TEMPSAC by 8%.

IV. DISCUSSION AND CONCLUSION

While mmWave sensors are more robust to environmental
factors than other odometry sensors, measurements are sub-
jected to high levels of outliers caused by multipath reflections.
Yet, Doppler velocity ego-motion is traditionally estimated
using data collected from a single time step [8], [10] thereby
ignoring the time-dependency of successive measurements. In
this paper, we proposed two methods that leverage the tempo-
ral relationship between measurement points to identify inliers
using a temporally weighted sliding window. These methods
improve motion estimation accuracy by 19.5% compared to
traditional RANSAC based methods [8].

TWLSQ performed 8% better on average than TEMPSAC
and 25.3% better than KB RANSAC. TWLSQ performed the
best since it uniformly samples points over the entire sliding
window. Uniformly sampling points ensures that the likelihood
of generating a velocity model with specific parameter values
is directly proportional to the density of points corresponding
to those parameters. This means that TEMPSAC is more
likely to generate a velocity model using inliers because
they have higher densities due to being temporally consistent.
Concurrently, the likelihood of generating a model using
outliers is reduced since outliers in consecutive measurements
have no temporal relation with one another. These findings
are consistent with principles used in LIDAR scan matching,
where the density of points is transformed into a probability
distribution used for scan matching [16].

TEMPSAC performed 19.5% better than KB RANSAC. By
using the sliding window, the density of inliers was improved
like in TWLSQ. However, the likelihood of using these
inliers was reduced due to its sampling method. By selecting
points based on their temporal location within the buffer, the
likelihood of generating a model based on a dense cluster of
inliers is reduced, unless the cluster comes from the same
measurement. This may explain why the genetic algorithm
converged to having a buffer length of 3 and a forgetting
factor near one; to make the probability of generating a
model using inliers more evenly weighted across the sliding
window. The improvements in motion estimation underscore
the utility of leveraging temporal relationships in Doppler
velocity measurements. This concept improves the accuracy
of ego-motion estimation and paves the way for more robust
and reliable applications of mmWave odometry.
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